Pattern Regcognition with Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks from an algorithmic approach. The author has written a real-world practical "why-and-how" text that provides a refreshing contrast to competing texts' thoeretical appraoch and "pie-in-the-sky" claims. The text explores mulitple layered preceptrons and describes network types such as functional link, radial basis function, learning vector quantanization and self-organizing. The author also discusses recent clustering methods. This text is suitable for an advanced undergraduate course in pattern recognition or neural networks, and is also useful as a reference and a resource.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Carl Grant Looney is Professor and Director of the Graduate Program in the Computer Science Department at the University of Nevada in Reno.
Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance, graphical and structural methods, and Bayesian discrimination. Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functional link nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions. The more efficient fullpropagation, quickpropagation, cascade correlation, and various methods such as strategic search, conjugate gradients, and genetic algorithms are described. Advanced methods are also described, including the full-training algorithms for radial basis function networks and random vector functional link nets, as well as competitive learning networks and fuzzy clustering algorithms. This textbook is ideally suited for a senior undergraduate or graduate course in pattern recognition or neural networks for students in computer science, electrical engineering, and computer engineering. It is also a useful reference and resource for researchers and professionals.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Gut. Zustand: Gut | Seiten: 480 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 1204424/3
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. KlappentextrnrnPattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refres. Artikel-Nr. 897460756
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimumdistance, graphical and structural methods, and Bayesian discrimination. Looney has written a graduate level textbook combining the fields of pattern recognition and neural networks. It contains some theory of why the most useful networks work, the pitfalls, the algorithms to implement them, and their applications. This text is suitable for an advanced undergraduate or graduate level course in pattern recognition or neural networks for students in computer science or electrical and computer engineering. It is also useful as a reference and a resource for practitioners and researchers. Artikel-Nr. 9780195079203
Anzahl: 2 verfügbar