Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance, graphical and structural methods, and Bayesian discrimination.
Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functional link nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions. The more efficient fullpropagation, quickpropagation, cascade correlation, and various methods such as strategic search, conjugate gradients, and genetic algorithms are described. Advanced methods are also described, including the full training algorithms for radial basis function networks and random vector functional link nets, as well as competitive learning networks and fuzzy clustering algorithms.
Special topics covered include:
feature engineering
data engineering
neural engineering of network architectures
validation and verification of the trained networks
This textbook is ideally suited for a senior undergraduate or graduate course in pattern recognition or neural networks for students in computer science, electrical engineering, and computer engineering. It is also a useful reference and resource for researchers and professionals.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Carl Grant Looney is Professor and Director of the Graduate Program in the Computer Science Department at the University of Nevada in Reno.
Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance, graphical and structural methods, and Bayesian discrimination. Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functional link nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions. The more efficient fullpropagation, quickpropagation, cascade correlation, and various methods such as strategic search, conjugate gradients, and genetic algorithms are described. Advanced methods are also described, including the full-training algorithms for radial basis function networks and random vector functional link nets, as well as competitive learning networks and fuzzy clustering algorithms. This textbook is ideally suited for a senior undergraduate or graduate course in pattern recognition or neural networks for students in computer science, electrical engineering, and computer engineering. It is also a useful reference and resource for researchers and professionals.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: AwesomeBooks, Wallingford, Vereinigtes Königreich
Hardcover. Zustand: Very Good. Pattern Recognition Using Neural Networks: Theory and Algorithms for Engineers and Scientists This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. Artikel-Nr. 7719-9780195079203
Anzahl: 2 verfügbar
Anbieter: Bahamut Media, Reading, Vereinigtes Königreich
Hardcover. Zustand: Very Good. This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. Artikel-Nr. 6545-9780195079203
Anzahl: 1 verfügbar
Anbieter: Phatpocket Limited, Waltham Abbey, HERTS, Vereinigtes Königreich
Zustand: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Artikel-Nr. Z1-R-009-01895
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Gut. Zustand: Gut | Seiten: 480 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Artikel-Nr. 1204424/3
Anzahl: 2 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 480 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Artikel-Nr. 1204424/202
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. KlappentextrnrnPattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refres. Artikel-Nr. 897460756
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimumdistance, graphical and structural methods, and Bayesian discrimination. Looney has written a graduate level textbook combining the fields of pattern recognition and neural networks. It contains some theory of why the most useful networks work, the pitfalls, the algorithms to implement them, and their applications. This text is suitable for an advanced undergraduate or graduate level course in pattern recognition or neural networks for students in computer science or electrical and computer engineering. It is also useful as a reference and a resource for practitioners and researchers. Artikel-Nr. 9780195079203
Anzahl: 2 verfügbar