Teaches the machine learning process for business students and professionals using automated machine learning, a new development in data science that requires only a few weeks to learn instead of years of training
Though the concept of computers learning to solve a problem may still conjure thoughts of futuristic artificial intelligence, the reality is that machine learning algorithms now exist within most major software, including Websites and even word processors. These algorithms are transforming society in the most radical way since the Industrial Revolution, primarily through automating tasks such as deciding which users to advertise to, which machines are likely to break down, and which stock to buy and sell. While this work no longer always requires advanced technical expertise, it is crucial that practitioners and students alike understand the world of machine learning.
In this book, Kai R. Larsen and Daniel S. Becker teach the machine learning process using a new development in data science: automated machine learning (AutoML). AutoML, when implemented properly, makes machine learning accessible by removing the need for years of experience in the most arcane aspects of data science, such as math, statistics, and computer science. Larsen and Becker demonstrate how anyone trained in the use of AutoML can use it to test their ideas and support the quality of those ideas during presentations to management and stakeholder groups. Because the requisite investment is a few weeks rather than a few years of training, these tools will likely become a core component of undergraduate and graduate programs alike.
With first-hand examples from the industry-leading DataRobot platform, Automated Machine Learning for Business provides a clear overview of the process and engages with essential tools for the future of data science.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Kai R. Larsen is an Associate Professor of Information Systems in the division of Organizational Leadership and Information Analytics, Leeds School of Business, University of Colorado Boulder. He is a courtesy faculty member in the Department of Information Science of the College of Media, Communication and Information, a Research Advisor to Gallup, and a Fellow of the Institute of Behavioral Science.
Daniel S. Becker is a Data Scientist for Google's Kaggle division and founder of Kaggle Learn and Decision.ai.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Very Good. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Artikel-Nr. 0190941669-8-1
Anbieter: WorldofBooks, Goring-By-Sea, WS, Vereinigtes Königreich
Paperback. Zustand: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Artikel-Nr. GOR014424464
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 352 pages. 9.88x7.01x0.91 inches. In Stock. Artikel-Nr. x-0190941669
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Artikel-Nr. V9780190941666
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - This book teaches the full process of how to conduct machine learning in an organizational setting. It develops the problem-solving mind-set needed for machine learning and takes the reader through several exercises using an automated machine learning tool. To build experience with machine learning, the book provides access to the industry-leading AutoML tool, DataRobot, and provides several data sets designed to build deep hands-on knowledge of machine learning. Artikel-Nr. 9780190941666
Anzahl: 2 verfügbar