Verwandte Artikel zu Bayesian Methods for Hackers: Probabilistic Programming...

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference (Addison-Wesley Data & Analytics) - Softcover

 
9780133902839: Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference (Addison-Wesley Data & Analytics)

Inhaltsangabe

Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis

Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power.

Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention.

Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects.

Coverage includes

• Learning the Bayesian “state of mind” and its practical implications

• Understanding how computers perform Bayesian inference

• Using the PyMC Python library to program Bayesian analyses

• Building and debugging models with PyMC

• Testing your model’s “goodness of fit”

• Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works

• Leveraging the power of the “Law of Large Numbers”

• Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning

• Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes

• Selecting appropriate priors and understanding how their influence changes with dataset size

• Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough

• Using Bayesian inference to improve A/B testing

• Solving data science problems when only small amounts of data are available

Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Cameron Davidson-Pilon has seen many fields of applied mathematics, from evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His main contributions to the open-source community include Bayesian Methods for Hackers and lifelines. Cameron was raised in Guelph, Ontario, but was educated at the University of Waterloo and Independent University of Moscow. He currently lives in Ottawa, Ontario, working with the online commerce leader Shopify.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Befriedigend
Befriedigend/Good: Durchschnittlich...
Diesen Artikel anzeigen

EUR 45,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

EUR 28,92 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789353063641: Bayesian Methods For Hackers: Probabilistic Programming And Bayesian Inference

Vorgestellte Ausgabe

ISBN 10:  9353063647 ISBN 13:  9789353063641
Softcover

Suchergebnisse für Bayesian Methods for Hackers: Probabilistic Programming...

Beispielbild für diese ISBN

Davidson-Pilon, Cameron
ISBN 10: 0133902838 ISBN 13: 9780133902839
Gebraucht Softcover

Anbieter: medimops, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Artikel-Nr. M00133902838-G

Verkäufer kontaktieren

Gebraucht kaufen

EUR 30,79
Währung umrechnen
Versand: EUR 45,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Davidson-pilon, Cameron
ISBN 10: 0133902838 ISBN 13: 9780133902839
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 226 pages. 7.00x9.50x0.50 inches. In Stock. Artikel-Nr. zk0133902838

Verkäufer kontaktieren

Neu kaufen

EUR 64,03
Währung umrechnen
Versand: EUR 28,92
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb