Verwandte Artikel zu Nature-Inspired Optimization Algorithms

Nature-Inspired Optimization Algorithms - Softcover

 
9780128219867: Nature-Inspired Optimization Algorithms

Inhaltsangabe

Nature-Inspired Optimization Algorithms, Second Edition provides an introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, and multi-objective optimization. This book can serve as an introductory book for graduates, for lecturers in computer science, engineering and natural sciences, and as a source of inspiration for new applications.

  • Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature
  • Provides a theoretical understanding and practical implementation hints
  • Presents a step-by-step introduction to each algorithm
  • Includes four new chapters covering mathematical foundations, techniques for solving discrete and combination optimization problems, data mining techniques and their links to optimization algorithms, and the latest deep learning techniques, background and various applications

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Xin-She Yang obtained his DPhil in Applied Mathematics from the University of Oxford. He then worked at Cambridge University and National Physical Laboratory (UK) as a Senior Research Scientist. He is currently a Reader in Modelling and Simulation at Middlesex University London, Fellow of the Institute of Mathematics and its Application (IMA) and a Book Series Co-Editor of the Springer Tracts in Nature-Inspired Computing. He has published more than 25 books and more than 400 peer-reviewed research publications with over 82000 citations, and he has been on the prestigious list of highly cited researchers (Web of Sciences) for seven consecutive years (2016-2022).

Von der hinteren Coverseite

Nature-Inspired Optimization Algorithms, Second Edition provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization.

This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference.

In the last few years, there are some signi?cant developments concerning nature-inspired optimization algorithms, their variants and applications. More applications have been carried out in a wide range of realworld settings. This Second Edition with new updates and additions, re?ects the latest state-of-the-art developments, including more details about the background and mathematical foundations of these algorithms. Furthermore, the new edition shows how such new optimization techniques can be linked to other active research areas such as data mining, machine learning and deep learning.

The Second Edition includes four new chapters, including a new Chapter 2 to introduce the mathematical foundations so as to help readers to gain greater insight into algorithms, a new Chapter 15 to introduce techniques for solving discrete and combination optimization problems, a new Chapter 18 introduces data mining techniques and their links to optimization algorithms, and a new Chapter 19 introduces the latest deep learning techniques, background and various applications.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagAcademic Press
  • Erscheinungsdatum2020
  • ISBN 10 0128219866
  • ISBN 13 9780128219867
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage2
  • Anzahl der Seiten312
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Nature-Inspired Optimization Algorithms

Foto des Verkäufers

Yang, Xin-She
Verlag: ACADEMIC PR INC, 2020
ISBN 10: 0128219866 ISBN 13: 9780128219867
Neu Kartoniert / Broschiert

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Kartoniert / Broschiert. Zustand: New. Artikel-Nr. 387276275

Verkäufer kontaktieren

Neu kaufen

EUR 175,38
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Yang, Xin-She
Verlag: Academic Press, 2020
ISBN 10: 0128219866 ISBN 13: 9780128219867
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780128219867_new

Verkäufer kontaktieren

Neu kaufen

EUR 171,33
Währung umrechnen
Versand: EUR 5,83
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Xin-She (School of Science and Technology Yang
ISBN 10: 0128219866 ISBN 13: 9780128219867
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware. Artikel-Nr. 9780128219867

Verkäufer kontaktieren

Neu kaufen

EUR 243,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb