Verwandte Artikel zu Machine Learning Guide for Oil and Gas Using Python:...

Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications - Softcover

 
9780128219294: Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications

Inhaltsangabe

Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges.

  • Helps readers understand how open-source Python can be utilized in practical oil and gas challenges
  • Covers the most commonly used algorithms for both supervised and unsupervised learning
  • Presents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorinnen und Autoren

Hoss Belyadi is the founder and CEO of Obsertelligence, LLC, focused on providing artificial intelligence (AI) in-house training and solutions. As an adjunct faculty member at multiple universities, including West Virginia University, Marietta College, and Saint Francis University, Mr. Belyadi taught data analytics, natural gas engineering, enhanced oil recovery, and hydraulic fracture stimulation design. With over 10 years of experience working in various conventional and unconventional reservoirs across the world, he works on diverse machine learning projects and holds short courses across various universities, organizations, and the department of energy (DOE). Mr. Belyadi is the primary author of Hydraulic Fracturing in Unconventional Reservoirs (first and second editions) and is the author of Machine Learning Guide for Oil and Gas Using Python. Hoss earned his BS and MS, both in petroleum and natural gas engineering from West Virginia University.

Dr. Alireza Haghighat is a senior technical advisor and instructor for Engineering Solutions at IHS Markit, focusing on reservoir/production engineering and data analytics. Prior to joining IHS, he was a senior reservoir engineer at Eclipse/Montage resources for nearly five years. As a reservoir engineer, he was involved in well performance evaluation with data analytics, rate transient analysis of unconventional assets (Utica and Marcellus), asset development, hydraulic fracture/reservoir simulation, DFIT analysis, and reserve evaluation. He has been an adjunct faculty member at Pennsylvania State University (PSU) for the past 5 years, teaching courses in Petroleum Engineering/Energy, Business and Finance departments. Dr. Haghighat has published several technical papers and book chapters on machine learning applications in smart wells, CO2 sequestration modeling, and production analysis of unconventional reservoirs. He has received his PhD in petroleum and natural gas engineering from West Virginia University and a master’s degree in petroleum engineering from Delft University of Technology.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagGulf Professional Publishing
  • Erscheinungsdatum2021
  • ISBN 10 0128219297
  • ISBN 13 9780128219294
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten478
  • Kontakt zum HerstellerNicht verfügbar

EUR 4,80 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Machine Learning Guide for Oil and Gas Using Python:...

Beispielbild für diese ISBN

Alireza Haghighat
Verlag: Elsevier Science, 2021
ISBN 10: 0128219297 ISBN 13: 9780128219294
Neu PAP

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9780128219294

Verkäufer kontaktieren

Neu kaufen

EUR 129,94
Währung umrechnen
Versand: EUR 4,80
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Belyadi, Hoss|Haghighat, Alireza
ISBN 10: 0128219297 ISBN 13: 9780128219294
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specific. Artikel-Nr. 402664234

Verkäufer kontaktieren

Neu kaufen

EUR 142,98
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Belyadi, Hoss; Haghighat, Alireza
ISBN 10: 0128219297 ISBN 13: 9780128219294
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780128219294_new

Verkäufer kontaktieren

Neu kaufen

EUR 142,37
Währung umrechnen
Versand: EUR 5,93
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Belyadi, Hoss/ Haghighat, Alireza
Verlag: Gulf Professional Pub, 2021
ISBN 10: 0128219297 ISBN 13: 9780128219294
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 300 pages. 9.00x6.00x1.30 inches. In Stock. Artikel-Nr. __0128219297

Verkäufer kontaktieren

Neu kaufen

EUR 136,93
Währung umrechnen
Versand: EUR 11,90
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb