Verwandte Artikel zu Machine Learning and Data Science in the Power Generation...

Machine Learning and Data Science in the Power Generation Industry: Best Practices, Tools, and Case Studies - Softcover

 
9780128197424: Machine Learning and Data Science in the Power Generation Industry: Best Practices, Tools, and Case Studies

Inhaltsangabe

Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study-driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting.

  • Provides best practices on how to design and set up ML projects in power systems, including all nontechnological aspects necessary to be successful
  • Explores implementation pathways, explaining key ML algorithms and approaches as well as the choices that must be made, how to make them, what outcomes may be expected, and how the data must be prepared for them
  • Determines the specific data needs for the collection, processing, and operationalization of data within machine learning algorithms for power systems
  • Accompanied by numerous supporting real-world case studies, providing practical evidence of both best practices and potential pitfalls

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Dr. Patrick Bangert is the Vice President of Artificial Intelligence at Samsung SDS where he leads both the AI software development and AI consulting groups that each provide various offerings to the industry. He is the founder and Board Chair of Algorithmica Technologies, providing real-time process modeling, optimization, and predictive maintenance solutions to the process industry with a focus on chemistry and power generation. His doctorate from UCL specialized in applied mathematics, and his academic positions at NASA’s Jet Propulsion Laboratory and Los Alamos National Laboratory made use of optimization and machine learning for magnetohydrodynamics and particle accelerator experiments. He has published extensively across optimization and machine learning and their relevant applications in the real world.

Von der hinteren Coverseite

Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagElsevier
  • Erscheinungsdatum2021
  • ISBN 10 0128197420
  • ISBN 13 9780128197424
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten276
  • HerausgeberBangert Patrick
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Machine Learning and Data Science in the Power Generation...

Foto des Verkäufers

ISBN 10: 0128197420 ISBN 13: 9780128197424
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Inhaltsverzeichnisrnrn1. IntroductionPatrick Bangert2. Data science, statistics, and time seriesPatrick Bangert3. Machine learningPatrick Bangert4. Introduction to machine learning in the power generation industryPatr. Artikel-Nr. 369558055

Verkäufer kontaktieren

Neu kaufen

EUR 163,78
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Elsevier, 2021
ISBN 10: 0128197420 ISBN 13: 9780128197424
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780128197424_new

Verkäufer kontaktieren

Neu kaufen

EUR 160,08
Währung umrechnen
Versand: EUR 5,94
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Patrick (Vice President of Artificial Intelligence at Samsung SDSA Bangert
ISBN 10: 0128197420 ISBN 13: 9780128197424
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study-driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting. Artikel-Nr. 9780128197424

Verkäufer kontaktieren

Neu kaufen

EUR 227,70
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb