The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologiesProvides insights into opinion spamming, reasoning, and social network analysisShows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequencesServes as a one-stop reference for the state-of-the-art in social media analytics
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Federico Alberto Pozzi received the Ph.D. in Computer Science at the University of Milano - Bicocca (Italy). His Ph.D. thesis is focused on Probabilistic Relational Models for Sentiment Analysis in Social Networks. His research interests primarily focus on Data Mining, Text Mining, Machine Learning, Natural Language Processing and Social Network Analysis, in particular applied to Sentiment Analysis and Community Discovery in Social Networks. He currently works at SAS Institute (Italy) as Senior Solutions Specialist - Integrated Marketing Management & Analytics.
Dr. Elisabetta Fersini is currently a postdoctoral research fellow at the University of Milano - Bicocca (Italy). Her research activity is mainly focused on statistical relational learning with particular interests in supervised and unsupervised classification. The research activity finds application to Web/Text mining, Sentiment Analysis, Social Network Analysis, e-Justice and Bioinformatics. She actively participated to several national and international research projects. She has been an evaluator for international research projects and member of different scientific committees. She co-founded an academic spin-off specialized in sentiment analysis and community discovery in social networks.
Prof. Enza Messina is a Professor in Operations Research at the Department of Informatics Systems and Communications, University of Milano-Bicocca, where she leads the research Laboratory MIND (Models in decision making and data analysis). She holds a Ph.D. in Computational Mathematics and Operations Research from the University of Milano. Her research activity is mainly focused on decision models under uncertainty and more recently on statistical relational models for data analysis and knowledge extraction. In particular, she developed relational classi_x000C_cation and clustering models that finds applications in different domains such as systems biology, e-justice, text mining and social network analysis.
Dr Bing Liu is an Associate Professor at the College of Agriculture, Nanjing Agricultural University, China. He received his PhD in Information Agriculture in 2016 from Nanjing Agricultural University. His research areas include extreme climate effects on crop growth, yield, and quality; agricultural systems modelling; and climate change impact assessment and adaptation.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Bahamut Media, Reading, Vereinigtes Königreich
paperback. Zustand: Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee. Artikel-Nr. 6545-9780128044124
Anzahl: 1 verfügbar
Anbieter: AwesomeBooks, Wallingford, Vereinigtes Königreich
paperback. Zustand: Very Good. Sentiment Analysis in Social Networks This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. Artikel-Nr. 7719-9780128044124
Anzahl: 2 verfügbar
Anbieter: medimops, Berlin, Deutschland
Zustand: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Artikel-Nr. M00128044128-V
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 256. Artikel-Nr. 371212634
Anzahl: 3 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Sentiment Analysis in Social Networks | Federico Alberto Pozzi (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2016 | Morgan Kaufmann | EAN 9780128044124 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Artikel-Nr. 129934868
Anzahl: 5 verfügbar