Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs.
The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Guorong Wu is an Assistant Professor of Radiology and Biomedical Research Imaging Center (BRIC) in the University of North Carolina at Chapel Hill. Dr. Wu received his PhD degree from the Department of Computer Science in Shanghai Jiao Tong University in 2007. After graduation, he worked for Pixelworks and joined University of North Carolina at Chapel Hill in 2009. Dr. Wu’s research aims to develop computational tools for biomedical imaging analysis and computer assisted diagnosis. He is interested in medical image processing, machine learning and pattern recognition. He has published more than 100 papers in the international journals and conferences. Dr. Wu is actively in the development of medical image processing software to facilitate the scientific research on neuroscience and radiology therapy.
Dinggang Shen, PhD is a Professor and a Founding Dean with School of Biomedical Engineering, ShanghaiTech University, Shanghai, China, and also a Co-CEO of United Imaging Intelligence (UII), Shanghai. He is a Fellow of IEEE, AIMBE, IAPR and MICCAI. He was a Jeffrey Houpt Distinguished Investigator and a Full Professor (Tenured) with the University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, USA. His research interests include medical image analysis, computer vision and pattern recognition. He has published more than 1,500 peer-reviewed papers in the international journals and conference proceedings, with H-index 130 and over 70K citations.
This book presents state-of- the-art of machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing.
In the second part leading research groups around the world present a wide spectrum of machine learning methods with their application to different medical imaging modalities, clinical domains and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations.
Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians.
Key Features:
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 11,87 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 512 pages. 9.25x7.75x1.25 inches. In Stock. Artikel-Nr. __0128040769
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modelin. Artikel-Nr. 122994466
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780128040768_new
Anzahl: Mehr als 20 verfügbar