CUDA Fortran for Scientists and Engineers shows how high-performance application developers can leverage the power of GPUs using Fortran, the familiar language of scientific computing and supercomputer performance benchmarking. The authors presume no prior parallel computing experience, and cover the basics along with best practices for efficient GPU computing using CUDA Fortran. To help you add CUDA Fortran to existing Fortran codes, the book explains how to understand the target GPU architecture, identify computationally intensive parts of the code, and modify the code to manage the data and parallelism and optimize performance. All of this is done in Fortran, without having to rewrite in another language. Each concept is illustrated with actual examples so you can immediately evaluate the performance of your code in comparison.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Greg Ruetsch is a Senior Applied Engineer at NVIDIA, where he works on CUDA Fortran and performance optimization of HPC codes. He holds a Bachelor’s degree in mechanical and aerospace engineering from Rutgers University and a Ph.D. in applied mathematics from Brown University. Prior to joining NVIDIA, he has held research positions at Stanford University’s Center for Turbulence Research and Sun Microsystems Laboratories.
Massimiliano Fatica is the Director of the HPC Benchmarking Group at NVIDIA where he works in the area of GPU computing (high-performance computing and clusters). He holds a laurea in Aeronautical Engineering and a PhD in Theoretical and Applied Mechanics from the University of Rome “La Sapienza”. Prior to joining NVIDIA, he was a research staff member at Stanford University where he worked at the Center for Turbulence Research and Center for Integrated Turbulent Simulations on applications for the Stanford Streaming Supercomputer.
CUDA Fortran for Scientists and Engineers shows how high-performance application developers can leverage the power of GPUs using Fortran, the familiar language of scientific computing and supercomputer performance benchmarking. The authors presume no prior parallel computing experience, and cover the basics along with best practices for efficient GPU computing using CUDA Fortran. In order to add CUDA Fortran to existing Fortran codes, they explain how to understand the target GPU architecture, identify computationally-intensive parts of the code, and modify the code to manage the data and parallelism and optimize performance – all in Fortran, without having to rewrite in another language. Each concept is illustrated with actual examples so you can immediately evaluate the performance of your code in comparison.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 7,45 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 338 3:B&W 7.5 x 9.25 in or 235 x 191 mm Perfect Bound on White w/Gloss Lam. Artikel-Nr. 96280473
Anzahl: 3 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 1st edition. 338 pages. 9.00x7.50x0.75 inches. In Stock. Artikel-Nr. __0124169708
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780124169708_new
Anzahl: Mehr als 20 verfügbar