This book developed from a series of conferences to facilitate the application of mathematical modeling to experimental nutrition. As nutrition science moves from prevention of gross deficiencies to identifying requirements for optimum long term health, more sophisticated methods of nutritional assessment will be needed. Collection and evaluation of kinetic data may be one such method. This books opens with chapters giving specific examples of the application of modeling techniques to vitamin A, carotenoids, folate, vitamin b-6, glycogen phosphorylase, transthyretin, amino acids, and energy metabolism. Obtaining kinetic data on internal processes is a major challenge; therefore, the text includes chapters on the use of microdialysis and ultrafiltration, use of membrane vesicles, and culture of mammary tissue. Many of the authors use the Simulation, Analysis and Modeling program which allows compartmental models to be described without specifying the required differential equations. The final sections of the book, however, present some more mathematical descriptions of physiological processes, including bioperiodicity, metabolic control, and membrane transport; discussions of some computational aspects of modeling such as parameter distributions, linear integrators and identifiability; and alternative mathematical approaches such as neural networks and graph theory.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book developed from a series of conferences to facilitate the application of mathematical modeling to experimental nutrition. As nutrition science moves from prevention of gross deficiencies to identifying requirements for optimum long term health, more sophisticated methods of nutritional assessment will be needed. Collection and evaluation of kinetic data may be one such method. This books opens with chapters giving specific examples of the application of modeling techniques to vitamin A, carotenoids, folate, vitamin b-6, glycogen phosphorylase, transthyretin, amino acids, and energy metabolism. Obtaining kinetic data on internal processes is a major challenge; therefore, the text includes chapters on the use of microdialysis and ultrafiltration, use of membrane vesicles, and culture of mammary tissue. Many of the authors use the Simulation, Analysis and Modeling program which allows compartmental models to be described without specifying the required differential equations. The final sections of the book, however, present some more mathematical descriptions of physiological processes, including bioperiodicity, metabolic control, and membrane transport; discussions of some computational aspects of modeling such as parameter distributions, linear integrators and identifiability; and alternative mathematical approaches such as neural networks and graph theory.
Dr. Coburn is director of the Biochemistry Department and Clincial Laboratory at the Fort Wayne State Developmental Center and professor ofchemistry at Indiana University-Purdue University at Fort Wayne. His undergraduate training was in agriculture at Rutgers University and his graduate training was in biochemistry at Purdue University. He is a diplomat of the American Board of Clinical Chemistry. His research has focused on the use of stable and radioactive tracers to evaluate the routes, rates, and regulation of vitamin B-6 metabolism. He has published numerous articles and reviews as well as a monograph, Chemistry and Metabolismof 4'-Deoxypyridoxine (CRC Press, 1981).
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 11,52 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 384 pages. 9.21x6.14x0.87 inches. In Stock. Artikel-Nr. zk0123993636
Anzahl: 1 verfügbar