Energy Dissipation in Hydraulic Structures (IAHR Monographs)

9781138027558: Energy Dissipation in Hydraulic Structures (IAHR Monographs)
Vom Verlag:

Recent progress in technology has permitted the construction of large dams, reservoirs and channels. These advances have necessitated the development of new design and construction techniques, particularly with the provision of adequate flood release facilities. Chutes and spillways are designed to spill large water discharges over a hydraulic structure (e.g. dam, weir) without major damage to the structure itself and to its environment. At the hydraulic structure, the flood waters rush as an open channel flow or free-falling jet, and it is essential to dissipate a very significant part of the flow kinetic energy to avoid damage to the hydraulic structure and its surroundings. Energy dissipation may be achieved by a wide range of design techniques. A number of modern developments demonstrated that energy dissipation may dissipated (a) along the chute, (b) in a downstream energy dissipator, or (c) a combination of both.
In hydraulic engineering numerous devices like stilling basins, baffled aprons, and vortex shafts are known under the collective term of energy dissipators. Their purpose is to dissipate hydraulic energy, i.e. to convert this energy mainly into heat. Dissipators are used in places where the excess hydraulic energy could cause damage such as erosion of tailwater channels, abrasion of hydraulic structures, generation of tailwater waves or scouring. Energy dissipators are an important element of hydraulic structures as transition between the highly explosive high velocity flow and the sensitive tailwater.
This volume examines energy dissipators mainly in connection with dam structures and provides a review of design methods. It includes topics such as hydraulic jump, stilling basins, ski jumps and plunge pools. It also introduces a general account of various methods of dissipation, as well as the governing flow mechanisms.
The book will be of interest to Civil and Environmental Engineers, Hydraulic and Mechanical Engineers working in academic and professional environments.

Über den Autor:

Hubert CHANSON received a degree of 'Ingénieur Hydraulicien' from the Ecole Nationale Supérieure d'Hydraulique et de Mécanique de Grenoble (France) in 1983 and a degree of 'Ingénieur Génie Atomique' from the 'Institut National des Sciences et Techniques Nucléaires' in 1984. He worked for the industry in France as a R&D engineer at the Atomic Energy Commission from 1984 to 1986, and as a computer professional in fluid mechanics for Thomson-CSF between 1989 and 1990. From 1986 to 1988, he studied at the University of Canterbury (New Zealand) as part of a Ph.D. project.

Hubert CHANSON is Professor in Hydraulic Engineering and Applied Fluid Mechanics at the University of Queensland since 1990. His research interests include design of hydraulic structures, experimental investigations of two-phase flows, coastal hydrodynamics, water quality modelling, environmental management and natural resources. In 1999 he was awarded a Doctor of Engineering from the University of Queensland for outstanding research achievements in gas-liquid bubbly flows.

Hubert CHANSON has been active also as consultant for both governmental agencies and private organisations. He is the main author of six books.

Awards received:

- The 13th Arthur Ippen award for outstanding achievements in hydraulic engineering (International Association of Hydraulic Engineering & Research)
- 2004 award for the best practice paper in the Journal of Irrigation and Drainage Engineering (ASCE-EWRI)

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:

Kaufgesuch aufgeben

Sie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!

Kaufgesuch aufgeben