Elements of Artificial Neural Networks (Complex Adaptive Systems)

4,6 durchschnittliche Bewertung
( 5 Bewertungen bei GoodReads )
9780262133289: Elements of Artificial Neural Networks (Complex Adaptive Systems)

"This most readable book gives a clear, up-to-date and conciseintroduction to artificial neural networks. It covers all the majornetwork models and provides insightful information on their applications.I thoroughly recommend it to senior undergraduates, first-year graduatestudents and practising engineers seeking an accessible lead-in to this fastexpanding field." Duc Truong Pham, Professor and Director of the Intelligent SystemsLaboratory, School of Engineering, University of Wales Cardiff, UnitedKingdom

Vom Verlag:

Elements of Artificial Neural Networks provides a clearly organized general introduction, focusing on a broad range of algorithms, for students and others who want to use neural networks rather than simply study them. The authors, who have been developing and team teaching the material in a one-semester course over the past six years, describe most of the basic neural network models (with several detailed solved examples) and discuss the rationale and advantages of the models, as well as their limitations. The approach is practical and open-minded and requires very little mathematical or technical background. Written from a computer science and statistics point of view, the text stresses links to contiguous fields and can easily serve as a first course for students in economics and management. The opening chapter sets the stage, presenting the basic concepts in a clear and objective way and tackling important -- yet rarely addressed -- questions related to the use of neural networks in practical situations. Subsequent chapters on supervised learning (single layer and multilayer networks), unsupervised learning, and associative models are structured around classes of problems to which networks can be applied. Applications are discussed along with the algorithms. A separate chapter takes up optimization methods. The most frequently used algorithms, such as backpropagation, are introduced early on, right after perceptrons, so that these can form the basis for initiating course projects. Algorithms published as late as 1995 are also included. All of the algorithms are presented using block-structured pseudo-code, and exercises are provided throughout. Software implementing many commonly used neural network algorithms is available at the book's website. Transparency masters, including abbreviated text and figures for the entire book, are available for instructors using the text.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen Angebot ansehen

Versand: EUR 9,00
Von Niederlande nach USA

Versandziele, Kosten & Dauer

In den Warenkorb

Beste Suchergebnisse beim ZVAB


Mehrotra, Kishan; Mohan, Chilukur K.; Ranka, Sanjay
ISBN 10: 0262133288 ISBN 13: 9780262133289
Gebraucht Hardcover Anzahl: 1
Kloof Booksellers & Scientia Verlag
(Amsterdam, Niederlande)

Buchbeschreibung Cambridge, MA: The MIT Press. A Bradford Book. 1997. Hardback. xiv,344. Ill. Bibl. Series: Complex adaptive systems. Book is as new and unread. Condition : very good. ISBN 9780262133289[KEYWORDS: computer science. Artikel-Nr. 257979

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Gebraucht kaufen
EUR 24,00
Währung umrechnen

In den Warenkorb

Versand: EUR 9,00
Von Niederlande nach USA
Versandziele, Kosten & Dauer